Skip to main content
Events for February 13 – March 19, 2024 – Page 2 – Office of Advanced Research Computing Events for February 13 – March 19, 2024 – Page 2 – Office of Advanced Research Computing

Intro to Python

Register to attend this workshop at the bottom of this page. Zoom link will be emailed after filling out the registration form. Python is a popular language in academia and industry for developing software and data science applications. Compared to the other generic programming languages like C, C++, or Java, learning Python is relatively easy. This … Read More

R for interactivity: an introduction to Shiny

Shiny is an R package that enables the creation of interactive websites for data visualization. This session provides a brief overview of the Shiny framework and how to edit and publish Shiny sites in RStudio (with shinyapps.io). Familiarity with R/RStudio is assumed.

Introduction to machine learning: supervised learning

This workshop is tailored for beginners in machine learning. It focuses on supervised learning algorithms that are a cornerstone of machine learning, where the algorithm learns from labeled training data, helping to predict outcomes for unforeseen data. Classification and Regression will be introduced. Participants will learn about key algorithms like Linear Regression and Decision Trees, … Read More

Data Publication 2 (publishing to data repositories and creating R packages)

Sharing your data and code is the essential step in maximizing the impact and usefulness of your research. This workshop first reviews repositories for data publication such as Dataverse, ICPSR, OSF, Zenodo, and more. Then we turn to a detailed discussion of building R packages. R Packages are an excellent way to distribute collections of … Read More

Introduction to machine learning: unsupervised learning

This workshop is designed to introduce the concepts of unsupervised learning, a branch of machine learning where algorithms infer patterns from unlabelled data. The course covers clustering methods like K-means and DBSCAN, used to identify inherent groupings in data. It also explores dimensionality reduction techniques such as PCA, which simplify complex data sets while preserving … Read More

Introduction to deep learning

This workshop offers an introduction to the fundamentals of deep learning, a highly influential branch of artificial intelligence. This session focuses on the core concepts of neural networks, including feedforward neural networks, the simplest type of artificial neural network architecture. The course also covers convolutional neural networks (CNNs), essential for image and video recognition, and … Read More

Deep dive into natural language processing

Are you eager to learn how to communicate with computer systems using Natural Language Processing (NLP) techniques, or to make machines understand human sentiments? Do you aspire to build intelligent applications like Siri, Alexa, or chatbots, even if you're starting from scratch? This workshop introduces Natural Language Processing (NLP), teaching you to preprocess text, analyze … Read More

Data Visualization with Python

Register to attend this workshop at the bottom of this page. Zoom link will be emailed after filling out the registration form. Workshop content: This workshop provides hands-on training on how to utilize packages like numpy, pandas, matplotlib, plotly, etc. to store, process, and visualize data. Amarel account: Apply here as soon as possible. You must … Read More

Large language models and ChatGPT

This workshop offers a thorough exploration of cutting-edge language models, with a spotlight on ChatGPT. Attendees will delve into the design, training techniques, and practical uses of these models. Discussions on ethical usage and best practices will be a key part of the learning experience. By the workshop's end, participants will gain a deep understanding … Read More

Machine Learning with Python and Scikit

Register to attend this workshop at the bottom of this page. Zoom link will be emailed after filling out the registration form. Machine learning (ML) methods are widely adopted by the academia and industry for applications in science, engineering, healthcare, and humanities. One of the greatest advantages of ML is that they are pretty general and … Read More